1 Asynchronous hatching and brood reduction by filial cannibalism in the burying beetle

- 2 Nicrophorus quadripunctatus
- 3 Authors: Mamoru Takata¹, Satoshi Koyama^{2,*}, Toshiyuki Satoh², Hajime Fugo¹
- 4
- 5 Author affiliation
- ⁶ ¹United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology,
- 7 3-5-8 Saiwai, Fuchu, Tokyo, Japan
- 8 ²Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai,
- 9 Fuchu, Tokyo, Japan
- 10
- 11 *Corresponding author
- 12 E-mail address: <u>skoyama@cc.tuat.ac.jp</u>
- 13 Telephone number: +81423675623
- 14 Fax number: +81423675628
- 15
- 16 **Running title**
- 17 Asynchronous hatching and brood reduction by filial cannibalism
- 18

19 Abstract

20 Despite decades of intensive research, there is much debate about the adaptive significance of 21 asynchronous hatching. A major obstacle in understanding the significance of this process is the 22 difficulty in separating the hypotheses that explain asynchronous hatching as an adaptive trait from 23 those that explain it as a by-product of physiological constraints on hatching or egg laying patterns. 24 We investigated the burying beetle Nicrophorus quadripunctatus, a species in which the parent can 25 eliminate less-adaptive offspring (e.g. slower-growing offspring) by filial cannibalism and adjust 26 the age structure of offspring to adaptive pattern. The main aim of this study was to determine the 27 age composition of offspring that survived and to determine the effect of larval growth on filial 28 cannibalism. We investigated how the point in time at which each group of larvae hatched affects 29 the timing of filial cannibalism by the female parent. We found that N. quadripunctatus exhibited 30 asynchronous hatching, and reared larvae of different ages. We also found that larvae hatching at 31 latter intervals had lower survival and growth rates; therefore, filial cannibalism plays a role in 32 eliminating later-arriving, slower-growing, and hence less-adaptive offspring. 33

Keywords: *Nicrophorus*; burying beetle; asynchronous hatching; filial cannibalism; sibling
 competition

37 Introduction

38 Asynchronous hatching refers to the time span across which a clutch hatches, from the hatching of 39 the first egg to the hatching of the last egg (Stenning 1996). This process usually establishes 40 competitive asymmetries within the brood, with the younger siblings facing higher risk of mortality 41 from starvation and showing slower growth, because they typically obtain less food. Many 42 hypotheses have been proposed to explain how selection might favour asynchronous hatching in spite 43 of the higher mortality risk of the youngest siblings (Magrath 1990; Stoleson and Beissinger 1995; 44 Stenning 1996). There are 2 main groups of hypotheses. One group of hypotheses explains that 45 asynchronous hatching provides a mechanism to increase fitness (e.g. peak-load-reduction 46 hypothesis (Hussell 1972), brood-reduction hypothesis (Lack 1954), sibling-rivalry hypothesis (Hahn 47 1981), insurance hypothesis (Stinson 1979) and sex-ratio-manipulation hypothesis (Slagsvold and 48 Lifield 1989)). The other group of hypotheses explains that asynchronous hatching is a by-product 49 of physiological constraints on egg laying patterns and selection for the early onset of incubation 50 (nest-failure hypothesis (Clark and Wilson 1981), limited-breeding-opportunity hypothesis 51 (Beissinger and Waltman 1991) and egg-viability hypothesis (Arnold et al. 1987)). Despite decades 52 of intensive research on asynchronous hatching in birds, none of the hypotheses has gained overall 53 support, and the reason why asynchronous hatching has evolved in altricial birds is still unclear 54 (Magrath 1990; Stoleson and Beissinger 1995; Stenning 1996). A major reason for the failure to 55 verify the reason is the close relationship between the onset of incubation and asynchronous hatching 56 in birds. Because of this physiological constraint, separating the hypotheses explaining asynchronous 57 hatching as an adaptive trait and those explaining it as a by-product of selection for the early onset of 58 incubation is difficult in altricial birds (Stenning 1996). However, asynchronous hatching is not 59 restricted to altricial birds, but is known over a range of taxa, e.g. in the White's skink Egernia whitii 60 (While et al. 2007; While and Wapstra 2008), in the woodroach Cryptocercus punctulatus (Nalepa 61 1988) and in the burying beetle Nicrophorus vespilloides (Müller 1987; Müller and Eggert 1990; 62 Smiseth et al. 2006). Using a non-avian species allowed us to test each hypothesis separately from 63 the onset of incubation.

The burying beetles, *Nicrophorus* spp., provides a particularly valuable system because, as in altricial birds, both parents provide elaborate care to their offspring, including food provisioning (Eggert et al. 1998). *N. quadripunctatus*, alike other species of the same genus, uses the carcass of small vertebrates (e.g. bird chick and small mouse) as a food resource for their larvae. Females lay eggs in the soil near the carcass. In *N. vespilloides*, the larvae hatch asynchronously over a mean 69 period of 27 h (range 8-56 h) on a 10-g carcass (Müller and Eggert 1990) and a mean period of 30 h 70 (range 8–56 h) on a 25-g carcass (Smiseth et al. 2006). After hatching, the larvae crawl to the carcass 71 and obtain some food by begging for pre-digested carrion from their parents and some by self-feeding 72 on the carcass. *Nicrophorus* spp. can directly regulate the number of offspring by filial cannibalism 73 (Bartlett 1987); therefore, the parent can eliminate less-adaptive offspring (e.g. slower-growing 74 offspring) from an asynchronously hatching brood and adjust the age structure of offspring to 75 adaptive pattern. To address whether asynchronous hatching in Nicrophorus is an adaptive trait or a 76 by-product of physiological constraints on egg laying patterns, it is important to demonstrate how the 77 point in time at which each larva hatches affects filial cannibalism by the parent; however, there is 78 currently no information on these effects. We predict that if asynchronous hatching is a by-product 79 of physiological constraints on egg laving patterns and incur a fitness cost to parents, parents tend to 80 kill later hatching offspring and synchronize the age structure of offspring. Conversely, if 81 asynchronous hatching in Nicrophorus has been evolved as an adaptive trait, we predict that parents 82 maintain the age structure of offspring.

The purposes of this study were to (1) determine the age composition of larvae that survive until they grow to the stage at which no parental care is required, and (2) determine the effect of larval growth on filial cannibalism in *N. quadripunctatus*. To our knowledge, this is the first report that documents the consequence of direct parental regulation on asynchronous broods.

87

88 Materials and methods

89 (a) Collection and maintenance of the beetles

We collected 60 adult *N. quadripunctatus* Kraatz in baited pitfall traps in Chiba, Japan, and reared first-generation offspring in the laboratory. The beetles were maintained individually in small transparent plastic cups (height 4 cm, diameter 6 cm) at 20 ± 1 °C under a 14:10 h light:dark cycle. They were fed small pieces of chicken meat twice a week. All males and females used in this experiment were sexually mature and ranged between 21 and 35 days of age.

95

96 (b) General experimental procedure

97 Twenty-three pairs (10 pairs for behavioural observation, 13 pairs for measuring survival rate and 98 growth) of randomly selected, non-sibling, virgin male and female beetles were each placed in a 99 plastic cup (height 8 cm, diameter 15 cm) filled with 2 cm of moist peat and were provided with 15 100 ± 0.5 g of chicken meat (15 g of meat is an appropriate amount for rearing larvae (Suzuki and Nagano 101 2007)). We placed them in a dark incubator at 20 ± 1 °C. After 93 h, the female and the meat were 102 transferred to a new plastic cup filled with 2 cm of moist peat. The male was removed from the old 103 plastic cup at this stage because male care has no effect on larval growth or survival under laboratory 104 conditions (Takata, unpublished study). The eggs were left to hatch.

105 We recorded parent and offspring behaviour under infrared light to investigate cause of larval 106 death. First, we checked for hatching at 8-h intervals and transferred newly hatching offspring to the 107 cup containing their mother. Second, parent and offspring behaviour were recorded using a video 108 camera (HOGA, HCIR-41F690) under infrared light until the age at which the larvae dispersed from 109 the carcass. We noted the number of hatching and surviving larvae at 8-h intervals. If some larvae 110 disappeared from the brood, we checked the video and investigated the cause of the larvae's death. 111 We defined a larva that was bitten by the parent as one that died because of filial cannibalism. We 112 defined a larva that appeared shrunken and that died near the carcass as one that died because of 113 hunger or infection. Additionally, we weighed larval body mass at 8-h intervals until dispersal, to 114 obtain general information on larval growth. The age of dispersal is defined as the day at which the 115 larvae left the crypt surrounding the carcass. Dispersal from the carcass is synchronous and occurs 116 normally when the earliest hatched larvae are 144 h old.

117 To investigate the hatching pattern and measure the growth and survival rate of different-aged 118 larvae, we noted the number of hatching and surviving larvae at 4-h intervals and measured their 119 body mass. First, we checked for hatching larvae at 4-h intervals and transferred newly hatching 120 offspring to the cup containing their mother. Then, we used the hatching time of each larva from the 121 onset of hatching as the time of hatching in the subsequent analysis. Second, to measure the growth 122 of each group of larvae that hatched at the same time interval, we individually weighed living larvae 123 that were on the carcass at 6-h intervals until the age at which they dispersed from the carcass. 124 Because of their rapid growth, different-aged larval body mass was determinably different from each 125 other; therefore, we could identify the hatching time of each larva in each measurement of body mass. 126 We confirmed in the pilot study that no larvae caught up to the body weight of earlier hatching larvae, 127 therefore we could identify the time of hatching of each larva and growth of each group of larvae 128 using this method. But, we could not identify the body mass of individual larva, because the larvae 129 which hatched at the same time interval exhibited similar growth, we calculated mean body mass of 130 each group of larvae and used it to calculate the growth rate of each group of larvae in the subsequent 131 analysis. We used the number of each group of larvae in each brood that had survived to the age at

- 132 which the larvae dispersed from the carcass in the subsequent analysis for survival. We confirmed in
- 133 the pilot study that our experimental manipulation did not affect larval survival.
- 134

135 (c) Statistical analysis

136 First, the effects of the point in time at which each group of larvae hatched and clutch size on offspring 137 survival were analysed using a generalized linear mixed model (GLMM) with the lme4 package 138 (Bates and Maechler 2010). Survival rate was treated as a response variable assuming a binomial 139 distribution, hatching time and clutch size as an explanatory variable and brood identity as a random 140 factor. Second, to test the effect of clutch size on hatching pattern, we used two different indices for 141 asynchronous hatching patterns, hatching spread and hatching skew, in the following analysis. 142 Hatching spread is the time between hatching of the first and that of the last larva from each brood 143 (Smiseth et al. 2006). Hatching skew is an index of the degree to which hatching was skewed towards 144 the part of hatching period. Hatching skew index, V(t), was calculated as follows:

145
$$V(t) = \sum (T_i - T_m)/T_m \times P_i$$

146 where T_i refers to a particular time interval of the hatching period ranging between 0 and n, T₀ refers 147 to the first time interval of the hatching period, T_n refers to the last time interval of the hatching period, 148 T_m refers to the midst time interval of hatching period ($T_m = (T_n - T_0)/2$), and P_i refers to the 149 proportion of the larvae that hatched a particular time interval of the hatching period. A hatching 150 skew index approaching a value of -1 indicate that hatching was skewed toward the earlier hatching 151 period, and it approaching a value of 1 indicate that hatching was skewed toward the later hatching 152 period. More detailed information is presented on Smiseth et al. (2008). The effects of clutch size on 153 hatching spread and hatching skew were analysed using a generalized linear model (GLM), hatching 154 spread and hatching skew was treated as a response variables assuming a binomial distribution, clutch 155 size as an explanatory variable. Third, correlation between the hatching spread and hatching skew 156 was analyzed using a GLM. Hatching skew was treated as response variables assuming a Gaussian 157 distribution, hatching spread as an explanatory variable. Finally, the effects of the point in time at 158 which each group of larvae hatched on the growth rates of each group of larvae were analysed using 159 a GLMM. Growth rate was treated as a response variable assuming a Gaussian distribution, hatching 160 time as an explanatory variable and brood identity as a random factor. Methods for calculation of the 161 growth rates were described below. In this study, we could not identify the body mass of each larva 162 which hatched at the same time interval. So, we calculated mean body mass of each group of larvae 163 and used it to calculate the growth rate of each group of larvae. The body mass of N. quadripunctatus

- 164 larvae increased exponentially within the first few days. We transformed the first 24 h of larval body
- 165 masses which were weighed 6 h intervals into logarithmic values to calculate growth rate; therefore
- 166 there were 4 data points for each group of larvae. Then, we calculated slopes of the regression line of
- 167 log (body mass) on time as growth rates. The slope of the regression line for each group of larvae
- 168 was calculated as follows:
- 169 $\sum (X_i X_m)(\log Y_i \log Y_m)/(X_i X_m)^2 \times 100$
- 170 where X_i is the time after hatching, Y_i is mean body mass (mg) for each group of larvae at time X_i ,
- 171 and X_m and Y_m are the mean values of X and Y. All correlation coefficient values were >0.97. We
- performed all analyses using R 2.12.1 GUI 1.35 (<u>http://cran.r-project.org</u>). Data are expressed as
 mean ± SD.
- 174

175 Results

176 (a) The cause of larval death and general information on larval body mass

- We observed 156 larvae hatched from 10 clutches. Sixteen out of 156 larvae had died before dispersing from the carcass. Our video analysis revealed that 14 larvae $(1.4 \pm 1.7 \text{ per clutch})$ were killed by their female parent and 1 larva died as a result of hunger or infection. We could not determine the cause of death of the remaining dead larva.
- 181The mean larval body mass at hatching was 1.9 ± 0.3 mg and larvae grew up to 13.1 ± 3.0 mg182by age 24 h, 38.5 ± 14.0 mg by age 48 h, 103.8 ± 38.2 mg by age 72 h and 172.7 ± 53.5 mg by age18396 h. The mean larval weight at the dispersal stage (at age 120 h) was 193.1 ± 57.9 mg.
- 184

185 (b) Number of hatching larvae and larvae that survived

- 186 N. quadripunctatus exhibits asynchronous hatching (Fig. 1, sample size: 13 clutches). The number 187 of hatching larvae was skewed towards earlier hatching periods. Hatching spread ranged from 4 to 188 56 h (25 ± 12 h). The mean number of hatching larvae was 22 ± 8 . Hatching skew ranged from -0.52 189 to 0.06 (-0.15 \pm 0.27). Clutch size did not have a significant effect on hatching spread (GLM: estimate 190 = 0.368, t = 0.942, p = 0.365) and hatching skew (GLM: estimate = -0.006, t = -0.372, p = 0.719). 191 There was no significant correlation between hatching spread and hatching skew (GLM: estimate = 192 -0.004, t = -0.900, p = 0.378). 193 Larvae of different ages survived until dispersal (Fig. 1). The hatching spread across larvae
- that survived $(17 \pm 9 \text{ h})$ was lower than the hatching spread across the entire brood. Larvae hatching at latter intervals had lower survival (GLMM: estimate = -0.098, z = -4.380, p < 0.001, sample size:

- 196 219 larvae from 13 clutches). The mean number of larvae that survived was 11 ± 4 . Clutch size did
- 197 not have a significant effect on offspring survival (GLMM: estimate = -0.036, z = -0.858, p = 0.391).
- 198

199 (c) Effect of hatching time on growth rate

The point in time at which each group of larvae hatched had a significant negative effect on the growth rate (Fig. 2, GLMM: estimate = -0.001, $F_{1,40}$ = 4.435, p = 0.042).

202

203 Discussion

204 We found that N. quadripunctatus exhibited asynchronous hatching, and the number of hatching 205 larvae was skewed towards earlier hatching periods. Our study demonstrated that the female parent 206 decreases hatching spread by filial cannibalism, but still rears larvae of different ages. The point in 207 time at which each group of larvae hatched had a significant negative effect on the growth rate. 208 Additionally, we found that later hatching offspring faced higher risk of mortality from filial 209 cannibalism by the female parent; therefore, filial cannibalism plays a role in eliminating later-210 arriving, slower-growing, and hence less-adaptive offspring. To our knowledge, this is the first 211 demonstration of how the point in time at which each group of larvae hatched influences larval growth 212 and filial cannibalism by the female parent in an asynchronous hatching brood.

213 The point in time at which each group of larvae hatched had a significant negative effect on 214 the growth rate, suggesting that larvae hatching at latter intervals had lower growth rate. In this study, 215 we calculated mean body mass of each group of larvae and used it to calculate the growth rate of 216 each group of larvae. Since the number of larvae that hatched was not the same in each interval, the 217 mean body mass used to calculate the growth rate is based on inevitably unbalanced group size. The 218 result could be biased due to the unbalanced group size. However, our results are corresponding to 219 the results reported in the recent study on other species of burying beetle N. vespilloides (Smiseth et 220 al. 2007). Smiseth et al. (2007) used an experimentally established brood of N. vespilloides and found 221 that later hatching larvae grew less than earlier hatching larvae when the female parent provided care 222 for them. These findings suggest that there is age-based asymmetric sibling competition. Interestingly, 223 asynchronous hatching also forms competitive asymmetries among siblings in many altricial birds 224 (Magrath 1990; Stoleson and Beissinger 1995; Mock and Paker 1997). The brood-reduction 225 hypothesis explains that asynchronous hatching provides a mechanism by which asymmetric sibling 226 competition can reduce broods when resources are limited (Lack 1954). It predicts that competitively 227 disadvantaged offspring have a higher mortality risk resulting from sibling competition when

resources are limited. Coincidently, our results show that later hatching offspring faced higher mortality risk; however, the burying beetle directly reduces its brood by filial cannibalism (Bartlett 1987). It is therefore unlikely that the mechanism for brood reduction promotes the evolution of asynchronous hatching in the burying beetle.

232 Larvae hatching at latter intervals had lower survival. Our video analysis revealed that the 233 major cause of larval death in this species was from filial cannibalism by the female parent; therefore, 234 the negative effect of hatching time on survival rate suggests that later hatching offspring face a 235 higher risk of mortality from filial cannibalism. Furthermore, larvae hatching at latter intervals had 236 lower survival. These findings suggest that the female parent is more likely to kill the offspring that 237 exhibit a slower growth rate; therefore, our study revealed that filial cannibalism by the female parent 238 plays a role in eliminating later-arriving, slower-growing, and hence less-adaptive offspring, although 239 its primary role is thought to be to regulate the number of offspring to the amount of carcass provided 240 as food (Bartlett 1987).

241 In this study, clutch size did not have a significant effect on offspring survival, hatching spread 242 and hatching skew. Moreover, there was no significant correlation between hatching spread and 243 hatching skew. These findings suggest that hatching spread and hatching skew are independent 244 variables. Thus, future studies to investigate the adaptive consequence of asynchronous hatching need 245 to consider not only hatching spread but also hatching skew. Similar results was reported from 246 Smiseth et al. (2008). They investigated the effect of clutch size on hatching spread and hatching 247 skew and the correlation between hatching spread and hatching skew on five different carcass sizes 248 in N. vespilloides. They found that there was no correlation between hatching spread and hatching 249 skew, but these two indices were significantly influenced by clutch size. In contrast to Smiseth et al. 250 (2008), clutch size did not have significant effect on hatching spread and hatching skew in this study. 251 This difference may be due to a difference in methodology. Smiseth et al. (2008) have tested the 252 effect on five different carcass sizes (5 - 25 g), while our study tested the effect of clutch size on 253 hatching spread and hatching skew only on 15 g carcass. Therefore, the smaller variations in clutch 254 size may reduce statistical power in our study. Further studies are needed to investigate the potential 255 linkage between hatching spread and hatching skew.

Our study demonstrated that the female parent rears larvae of different ages. Smiseth et al. (2008) and Smiseth and Morgan (2009) established three types of broods with different hatching pattern, synchronous, moderately asynchronous and highly asynchronous, with a hatching span of 0, 24 and 48 h. Smiseth and Morgan (2009) found that offspring survival is lower in highly 260 asynchronous broods than in synchronous or aynchronous broods and Smiseth et al. (2008) found 261 that offspring survival is higher in moderately asynchronous broods than in either synchronous or 262 highly asynchronous broods. These findings suggest that there is an optimal length of hatching spread. 263 In this study, the hatching spread across larvae that survived was lower than the hatching spread 264 across the entire brood. Furthermore, larvae hatching at latter intervals had lower survival. Our results 265 suggest that the female parent decreases hatching spread by filial cannibalism. These findings imply 266 that the optimal length of hatching span in N. quadripunctatus is lower than the observed length of 267 hatching span and female parent regulate the length of hatching span to optimal length by filial 268 cannibalism. To understand the adaptive significance of asynchronous hatching in *Nicrophorus*, 269 further studies are needed to investigate the effect of hatching pattern on offspring survival and 270 growth. Additionally, in this study, we focused on the effect of filial cannibalism by the female parent 271 on age structure of offspring, and male was removed from experimental system. Although male care 272 has no effect on larval growth or survival under laboratory conditions (Takata, unpublished study), 273 the presence of male may affect pattern of filial cannibalism by female parent. Further studies are 274 needed to investigate the potential effects of male presence on the pattern of filial cannibalism by 275 female.

276

277 References

Arnold TW, Rohwer FC, Armstrong T (1987) Egg viability, nest predation, and the adaptive significance of clutch size in prairie ducks. Amer Nat 130:643–653

- 280 Bartlett J (1987) Filial cannibalism in burying beetles. Behav Ecol Sociobiol 21:179–183
- 281 Bates D, Maechler M (2010): lme4: Linear mixed-effects models using S4 classes. R package version

282 0.999375-37. http://CRAN.R-project.org/package=lme4

- Beissinger SR, Waltman JR (1991) Extraordinary clutch size and hatching asynchrony of a
 neotropical parrot. Auk 108:863–871
- Clark AB, Wilson DS (1981) Avian breeding adaptations: hatching asynchrony, brood reduction, and
 nest failure. Q Rev Biol 56:253–277
- Eggert A–K, Reinking M, Muller JK (1998) Parental care improves offspring survival and growth in
 burying beetles. Anim Behav 55:97–107
- Hahn DC (1981) Asynchronous hatching in the laughing gull: cutting losses and reducing rivalry.
 Anim Behav 29:421–427
- Hussell DJT (1972) Factors affecting clutch size in arctic passerines. Ecol Monograph 42:317–364

Lack D (1954) *The Natural Regulation of Animal Numbers*. Oxford University Press, Oxford, UK

- 293 Magrath RD (1990) Hatching asynchrony in altricial birds. Biol Rev Camb Philos Soc 65:587–622
- 294 Mock DW, Paker GA (1997) *The Evolution of Sibling Rivalry*. Oxford University Press, Oxford, UK
- Müller JK (1987) Period of adult emergence in carabid beetles: an adaptation for reducing
 competition? Acta Phytopathologica Et Entomologica Hungarica 22:409–415
- Müller JK, Eggert A–K (1990) Time-dependent shifts between infanticidal and parental behavior in
 female burying beetles a mechanism of indirect mother-offspring recognition. Behav
 Ecol Sociobiol 27:11–16
- 300 Nalepa CA (1988) Reproduction in the woodroach *Cryptocercus punctulatus* Scudder (Dictyoptera:
- 301 Cryptocercidae): mating, oviposition, and hatch. Ann Entomol Soc Am 81:637–641
- Slagsvold T, Lifjeld JT (1989) Hatching asynchrony in birds: the hypothesis of sexual conflict over
 parental investment. Amer Nat 134:239–253
- Smiseth PT, Hwang W, Steiger S. Müller JK (2008) Adaptive consequences and heritable basis of
 asynchronous hatching in *Nicrophorus vespilloides*. Oikos 117:899–907
- Smiseth PT, Morgan K (2009) Asynchronous hatching in burying beetles: a test of the peak load
 reduction hypothesis. Anim Behav 77:519–524
- Smiseth PT, Ward RJS, Moore AJ (2006) Asynchronous hatching in *Nicrophorus vespilloides*, an
 insect in which parents provide food for their offspring. Funct Ecol 20:151–156
- Smiseth PT, Ward RJS, Moore AJ (2007) Parents influence asymmetric sibling competition:
 Experimental evidence with partially dependent young. Ecology 88:3174–3182
- 312 Stenning MJ (1996) Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses.

313 Trends Ecol Evol 11:243–246

- 314 Stinson CH (1979) On the selective advantage of fratricide in raptors. Evolution 33:1219–1225
- Stoleson SH, Beissinger SR (1995) Hatching asynchrony and the onset of incubation in birds,
 revisited: when is the critical period? Curr Ornithol 12:191–270
- Suzuki S, Nagono M (2007) Effects of carcass size and male presence on clutch size in Nicrophorus
 quadripunctatus (Coleoptera: Silphidae). Entomol Sci 10:245–248
- 319 While GM, Jones SM, Wapstra E (2007) Birthing asynchrony is not a consequence of asynchronous
- 320 offspring development in a non-avian vertebrate, the Australian skink *Egernia whitii*. Funct
 321 Ecol 21:513–519
- While GM, Wapstra E (2008) Are there benefits to being born asynchronously: an experimental test
 in a social lizard. Behav Ecol 19:208–216

324	
325	Acknowledgements
326	We thank Seizi Suzuki and two anonymous referees for valuable comments on the manuscript.
327	
328	Funding
329	This study was supported by a Grant-in-Aid for Scientific Research (B:23300281) from The
330	Ministry of Education, Culture, Sports, Science and Technology (MEXT) to HF.
331	
332	Ethics declarations
333	Ethics approval
334	Not applicable.
335	
336	Consent to participate
337	Not applicable.
338	
339	Consent for publication
340	Not applicable.
341	
342	Competing interests
343	The authors declare no competing interests.

345 Figures

346

Figure 1 Number of hatching larvae and larvae that survived during 4-h intervals. The black bars
denote the mean number of larvae that survived; the white bars denote the mean number of dead
larvae. Data are presented as mean + SE.

351

Figure 2 The effect of the point in time at which each group of offspring hatched on offspring growth rate. Each plot denotes the mean growth rate of larvae in each brood at 4-h intervals. The growth rate was calculated as the slope of the regression line of log (body mass) on time for each group of offspring.